Dwarf chameleons in South Africa larger in urban environments than in the wild

Dwarf chameleons in South Africa larger in urban environments than in the wild

Science

Dwarf chameleons of the genus Bradypodion from South Africa have long been known to adapt very well to urban habitats. Two scientists from Cape Town and Johannesburg have now investigated how different populations differ in body size, body weight and body condition score within urban and natural environments.

A total of 1107 individuals of five different dwarf chameleon species were studied over a period of four years. Bradypodion damaranum in George (Western Cape), Bradypodion melanocephalum in Durban (KwaZulu-Natal), Bradypodion setaroi in St Lucia (KwaZulu-Natal), Bradypodion thamnobates in Howick (KwaZulu-Natal) and Bradypodion ventrale in Jeffrey’s Bay (Eastern Cape) were each searched at night at three to eight locations. Forest fragments, grass savannahs or coastal bushland less than 15 km from the centre of the nearest town were classified as ‘natural sites’. All sites located within a city and consisting of both introduced and native flora regularly cut back by humans (gardens, public parks and green spaces, roadsides) were categorised as ‘urban’. The dwarf chameleons found were measured, weighed, sexed and marked with a felt-tip pen to avoid duplicate measurements on the same animals. Obviously pregnant females were not measured.

Statistical analyses and comparisons revealed that the chameleons at natural sites were always smaller and lighter on average than the populations of the same species at urban sites. Significantly larger and heavier in the city were both sexes in Bradypodion damaranum, the males in Bradypodion melanocephalum, ventrale and setaroi and the females in Bradypodion thamnobates. The body condition score was higher in urban areas for both sexes of Bradypodion damaranum and setaroi and males of Bradypodion melanocephalum than for the chameleons in natural habitats. In Bradypodion ventrale and thamnobates, there were no differences in body condition score between the different populations.

Research into exactly how these exciting differences come about is still pending.

Big cities, big bodies: urbanisation correlates with large body sizes and enhanced body condition in African dwarf chameleons (Genus: Bradypodion)
Jody M. Barends, Krystal A. Tolley
African Zoology 2024, 59(3)
DOI: 10.1080/15627020.2024.2402256

Photo: Bradypodion melanocephalum, photographed by suncana, licence Creative Commons Attribution 4.0 International

Knysna dwarf chameleons: city vs. forest habitat

Knysna dwarf chameleons: city vs. forest habitat

Science

How do chameleons change when their natural habitat has to make way for human settlements? International scientists recently got to the bottom of this question. They hypothesised that a chameleon living in a suburban area must differ from its forest-dwelling conspecifics in terms of injury frequency, external characteristics and bite force as an expression of changed living conditions.

Between 2020 and 2022, 276 Knysna dwarf chameleons (Bradypodion damaranum) were studied in South Africa. The locations chosen were George and Knysna, two towns located around 60 kilometres apart on the south coast of South Africa. George was founded in 1811 and now has over 220,000 inhabitants, while Knysna was founded in 1825 and currently has just under 76,000 inhabitants, although they live in much less space and are therefore much more densely populated. In both cities, Bradypodion damaranum were caught in urban environments (private gardens, public parks, roadsides), examined and then released. Chameleons were also studied 10 to 12 kilometres away in their natural habitat (temperate forest). The adult chameleons were measured and photographed. The data was analysed and compared using various methods. Wounds, scars and bone fractures visible to the naked eye were counted as injuries. To measure bite force, the animals were each encouraged to bite five times on a special piezoelectric measuring device.

The analysis showed that the dwarf chameleons in urban environments had significantly lower casques and shorter gulars. The males from the city, however, had larger and wider heads. The female dwarf chameleons from the forest had significantly larger casque spurs. The males in the city had significantly more injuries (88.1%) compared to the males in the forest (72.5%). In the city, the dwarf chameleons also bit harder than in the forest when casque height and parietal crest were included in the calculations. However, when snout-vent length was included instead, there was no difference in bite force.

Differences between urban and natural populations of dwarf chameleons (Bradypodion damaranum): a case of urban warfare?
Melissa A. Petford, Anthony Herrel, Graham J. Alexander, Krystal A. Tolley
Urban Ecosystems 2023
DOI: 0.1007/s11252-023-01474-1

Comparative anatomy of the forearms of different chameleons

Comparative anatomy of the forearms of different chameleons

Tiermedizin Science

The anatomy of chameleons seems to be strongly adapted to their way of life. Tree-dwellers differ in many aspects from ground-dwellers. Several studies at the University of South Dakota this year have already looked at various anatomical aspects of chameleons. A new study is dedicated to the hands and arms.

For the investigation, the arms and hands of a total of 12 chameleons were isolated from existing microcomputer tomography scans and displayed in 3D. These were measured to about 30 different lengths and widths using software. Scans of the species Bradypodion damaranum, Bradypodion occidentale, Calumma hilleniusi, Calumma crypticum, Chamaeleo namaquensis, Chamaeleo zeylanicus, Furcifer balteatus, Furcifer campani, Rhampholeon spinosus, Rhampholeon temporalis, Trioceros goetzei goetzei and Trioceros werneri were evaluated. When selecting the species, care was taken to select one strictly tree-inhabiting chameleon and one more ground-inhabiting chameleon per genus.

The evaluation revealed that tree-dwelling chameleons show few differences in forelimb anatomy compared to ground-dwelling chameleons. Tree-dwelling species showed a majority of separated metacarpal bones 1-3, while ground-dwelling species showed fused metacarpal bones. Interestingly, this study differs from earlier studies by other authors, which yielded different results. The relatively small number of animals studied may be related to this. Larger studies could be helpful here.

Ecological and evolutionary drivers of chameleon forelimb variation
Ellie M. Schley
Honors Thesis 302 der Universität von South Dakota, 2023
DOI: gibt es nicht

Comparison of pelvic girdles in chameleons

Comparison of pelvic girdles in chameleons

Science

The anatomy of chameleons is strongly adapted to their way of life. Tree-dwellers differ in many aspects from ground-dwellers. The pelvic girdle has been little studied anatomically in chameleons so far – a publication from the USA now deals with it in more detail.

For the study, the pelvic girdles of 22 chameleons were isolated from existing microcomputer tomography scans and displayed in 3D. These were measured to 16 different lengths and angles using software. Archaius tigris, Bradypodion damaranum, Calumma gallus, Calumma parsonii parsonii, Chamaeleo zeylanicus, Furcifer balteatus, Kinyongia matschiei, Kinyongia tavetana, Nadzikambia mlanjense and Trioceros quadricornis gracilior were assigned to tree dwellers. Brookesia brygooi, Chamaeleo namaquensis, Palleon nasus nasus, Rhampholeon temporalis and Rieppeleon brachyurus were attributed to ground-dwelling species. The species Bradypodion occidentale, Brookesia ebenaui, Chamaeleo anchietae, Furcifer campani, Rhampholeon spinosus, Rieppeleon kerstenii kerstenii and Trioceros goetzei goetzei were classified as semiarboreal. Mainly males were examined.

As expected, the evaluation showed that tree-dwelling chameleons had narrower, shorter girdles than ground-dwelling ones. The narrower pelvic girdle makes it easier to hide behind branches and flatten the body to the maximum. It also ensures that the body’s centre of gravity is closer to the branch and thus increases stability when climbing. Ground-dwelling chameleons, on the other hand, had larger and wider pelvic girdles. These allow them to step more quickly and provide greater stability when walking on ground surfaces.

How phylogeny and arboreality affect pelvic girdle anatomy of chameleons
Dakota J. John
Honors Thesis 299, University of South Dakota, 2023
DOI: none

 

Species diversification in chameleons

Species diversification in chameleons

Science

From earlier studies, we know that the first chameleons evolved in the late Cretaceous, about 90 million years ago, on mainland of Africa. Around the border between the Cretaceous and Tertiary periods, about 65 million years ago, different species began to evolve. It is still unclear today which factors contributed to the diversity of species. Two researchers from Swansea University in Wales have now used various computational models of phylogenetics to investigate what might have influenced diversification (the splitting of chameleons into many different species).

First, they studied the diversification of chameleon species in Madagascar. In terms of evolutionary history, there are two points in time when chameleons apparently spread across the sea from mainland Africa to Madagascar. One is about 65 million years in the past, the other 45 million years. You could now think that the climatically extremely different habitats in Madagascar could have driven the evolution of the species very quickly after the spread across the sea. To the surprise of the researchers, however, no evidence of this was found. The species richness of chameleons on Madagascar must therefore come from the fact that chameleons spread there very early and thus simply had much more time to develop into different species than elsewhere.

Furthermore, the researchers investigated whether switching between two ecomorphs – from ground-dwelling stub-tailed chameleons to tree-dwelling chameleons with longer tails – had an impact on species diversity. Rather surprisingly, this did not seem to be the case. The evolution to tree-dwellers with longer tails occurred relatively early on one or two occasions. No evidence could be found that different ecomorphs accelerated diversification. Instead, speciation rates were found to slow down progressively over the last 60 million years. Only a very early dispersal event of the genus Bradypodion in South Africa around 10 million years ago was accompanied by a two- to fourfold diversification rate.

As a third focus of the study, the researchers examined the genus Bradypodion. During the climate change in the Miocene around 10 million years ago, South Africa changed a lot. Forests disappeared, leaving behind isolated forest habitats and, in between, savannahs, some of which are now so-called hot spots of biodiversity. Two of them, the Cape Floristic Region at the southwestern tip of South Africa and Maputuland-Pondoland-Albany on the east coast of South Africa, are home to a particularly large number of Bradypodion species. Each species is limited to a geographically very clearly defined area. The researchers, therefore, suspect that Bradypodion species have actually evolved faster under the influence of habitat change. It should be noted that the diversification rate of the genus Bradypodion is probably rather underestimated, as there are still many hidden species to be assumed.

Diversification dynamics of chameleons (Chamaeleonidae)
Stephen Giles, Kevin Arbuckle
Journal of Zoology, 2022
DOI: 10.1111/jzo.13019

Factors in the geographical dispersal of chameleons

Factors in the geographical dispersal of chameleons

Science

For a long time, people have been trying to find out how and why chameleons have spread across the African continent, to islands and as far as Europe and Asia. French scientists, in collaboration with international colleagues, have now used phylogenetics and various computational models to investigate how the factors of body size, coastal habitat and extreme lifestyles may have affected the distribution of different chameleon species. The study examined 181 species divided into nine main biogeographical regions: North Africa and Arabia, Central Africa, Southeast Africa, Southwest Africa, India, Socotra, Madagascar, Comoros and Seychelles.

Chameleon species that occurred more than 10 km from the sea historically spread significantly less than the 74 coastal chameleon species. A similar phenomenon is known from skinks and crocodiles. Dispersal probably took place mainly along the coasts, mostly on the same continent and only rarely across the water to other continents or islands.

The size of the different chameleons also seems to have influenced their dispersal throughout history: Large chameleons spread further and more frequently than small chameleons. This could be related to the fact that larger chameleons have a lower metabolic rate – so they need less energy overall relative to smaller competitors. In addition, larger chameleons lay clutches with significantly more eggs, which simply gives them an advantage in numbers.

A somewhat unexpected result came from the study of different life cycles. One would initially assume that short life cycles are associated with faster dispersal. In fact, the calculations showed that especially chameleon species with extreme life cycles spread further. Thus, those that reproduced particularly slowly or particularly quickly were historically more successful among chameleons than the species “in the middle”. In this regard, the authors consider whether particularly slow life cycles with late sexual maturity and long gestation might be more successful on the same continent, while faster reproductive strategies with large clutches are more favourable for dispersal across the sea to islands and other continents. In line with this, Furcifer polleni and Furcifer cephalolepis in Comoros and Chamaeleo zeylanicus in India, all three examples of aquatic dispersal, have a very fast life cycle.

The 34 chameleon species with the combination of living close to the coast, large size and extreme life cycle had a 98% higher dispersal rate than species without these characteristics.  All in all, this is certainly a very theoretical study, but it nevertheless provides exciting insights into the historical distribution and dispersal of chameleons.

Chameleon biogeographic dispersal is associated with extreme life history strategies
Sarah-Sophie Weil, Laurie Gallien, Sébastien Lavergne, Luca Börger, Gabriel W. Hassler, Michaël P.J. Nicolaï & William L. Allen
Ecography
DOI: 10.1111/ecog.06323