Dwarf chameleons in South Africa larger in urban environments than in the wild

Dwarf chameleons in South Africa larger in urban environments than in the wild

Science

Dwarf chameleons of the genus Bradypodion from South Africa have long been known to adapt very well to urban habitats. Two scientists from Cape Town and Johannesburg have now investigated how different populations differ in body size, body weight and body condition score within urban and natural environments.

A total of 1107 individuals of five different dwarf chameleon species were studied over a period of four years. Bradypodion damaranum in George (Western Cape), Bradypodion melanocephalum in Durban (KwaZulu-Natal), Bradypodion setaroi in St Lucia (KwaZulu-Natal), Bradypodion thamnobates in Howick (KwaZulu-Natal) and Bradypodion ventrale in Jeffrey’s Bay (Eastern Cape) were each searched at night at three to eight locations. Forest fragments, grass savannahs or coastal bushland less than 15 km from the centre of the nearest town were classified as ‘natural sites’. All sites located within a city and consisting of both introduced and native flora regularly cut back by humans (gardens, public parks and green spaces, roadsides) were categorised as ‘urban’. The dwarf chameleons found were measured, weighed, sexed and marked with a felt-tip pen to avoid duplicate measurements on the same animals. Obviously pregnant females were not measured.

Statistical analyses and comparisons revealed that the chameleons at natural sites were always smaller and lighter on average than the populations of the same species at urban sites. Significantly larger and heavier in the city were both sexes in Bradypodion damaranum, the males in Bradypodion melanocephalum, ventrale and setaroi and the females in Bradypodion thamnobates. The body condition score was higher in urban areas for both sexes of Bradypodion damaranum and setaroi and males of Bradypodion melanocephalum than for the chameleons in natural habitats. In Bradypodion ventrale and thamnobates, there were no differences in body condition score between the different populations.

Research into exactly how these exciting differences come about is still pending.

Big cities, big bodies: urbanisation correlates with large body sizes and enhanced body condition in African dwarf chameleons (Genus: Bradypodion)
Jody M. Barends, Krystal A. Tolley
African Zoology 2024, 59(3)
DOI: 10.1080/15627020.2024.2402256

Photo: Bradypodion melanocephalum, photographed by suncana, licence Creative Commons Attribution 4.0 International

Phylogenetics of African dwarf chameleons

Phylogenetics of African dwarf chameleons

Science

The archives of museums and other zoological collections still contain a lot of single-gene fragment data. Although it is now relatively easy to decode entire genomes and prepare material for storage, this was not the case for a long time. Scientists at the University of Johannesburg (South Africa) have now investigated whether and, if so, which components of these single genes in dwarf chameleons can provide information on the entire genome with regard to the creation of phylogenetic family trees.

Samples were taken from 44 dwarf chameleons in the form of cut-off tail tips during various expeditions between 2010 and 2022. The sampled animals were captured and released in the Eastern Cape, KwaZulu-Natal, Limpopo, Mpumalanga, Northern Cape and Western Cape provinces. They belonged to the species Bradypodion barbatulum, caeruleogula, caffrum, damaranum, gutturale, melanocephalum, ngomeense, occidentale, pumilum, setaroi, taeniabronchum, thamnobates, transvaalense, ventrale, venustum as well as candidate species from Greytown, Kamberg. Karkloof Forest and Gilboa Forest in KwaZulu-Natal. An existing mitogenome of a Chamaeleo chamaeleon was used as a reference genome. In addition, the mitogenomes of seven other genera were loaded from GenBank for comparison.

DNA was extracted from all samples and phylogenetically analysed using Geneious Prime and IQ-Tree, among others. A total of 22 different alignments were created: a complete mitogenome alignment (without tRNA), 15 alignments of individual loci, the short fragment of 16S, a frequently used COI fragment, a concatenation of 16S fragment with ND2, a concatenation of ND2 and ND5, a concatenation of the two ribosomal subunits and a concatenation of all protein-coding genes (PCG). A statistical analysis of the data followed.

The results showed that the complete mitogenome topology is largely consistent with the previously published phylogenies of African dwarf chameleons from ND2-16S concatenations. The phylogeny based on the ND2 fragments proved to be more stable and even closer to the mitogenome. These gene fragments are therefore well suited to phylogenetically classify a genome and thus a chameleon species. However, there were also a few differences to the previously published phylogenies. The mitogenome topology considers Bradypodion setaroi and Bradypodion caffrum to be sister taxa. Furthermore, Bradypodion ngomeense possibly belongs genetically to the Bradypodion transvaalense clade instead of being a sister taxon of it.

The efficacy of single mitochondrial genes at reconciling the complete mitogenome phylogeny – a case study on dwarf chameleons
Devon C. Main, Jody M. Taft, Anthony J. Geneva, Bettine Jansen van Vuuren, Krystal A. Tolley
PeerJ 12:e17076, 2024
DOI: 10.7717/peerj.17076

Picture: Bradypodion transvaalense, photographed by Ryan van Huyssteen, Creative Commons Attribution-Share Alike 4.0 International

The microbiome of dwarf chameleons

The microbiome of dwarf chameleons

Tiermedizin Science

The term microbiome has been very popular for some years now. In humans and animals, it refers to the totality of all microorganisms that colonise a living being. Most of them colonise the gastrointestinal tract. In the case of chameleons, there is only very limited literature on this topic. A master’s thesis from South Africa now deals with the bacterial composition of the microbiome in South African dwarf chameleons of the genus Bradypodion.

60 cheek swabs were collected from wild chameleons in KwaZulu-Natal. Of these, 20 were cheek swabs from Bradypodion melanocephalum, 20 from Bradypodion thamnobates and 20 from Bradypodion setaroi. After sampling, the same 60 animals were transported in cloth bags to the research base, where the animals were kept in 3.3 l boxes for 24 hours to obtain faecal samples. Since not all of the original 60 chameleons defecated, faeces were collected from additional chameleons.

The samples were all genetically tested. 40.43% of the samples contained Firmicutes, a similarly large proportion of the samples contained Proteobacteria with 36.86%. Bacteroidota followed with some distance, which could be detected in just under 16% of the samples. Verrucomicrobiota, Fusobacteriota, Actinobateriota, Spirochetes, Desulfobacteroa, Cyanobacteria, Thermoplamatota, Deferribacterota, Synergistota, Campylobacterota, Deinococcota, Halobacterota, Euryarchaeota, Elusimicrobiota and Myxococcota were found in significantly smaller numbers (up to 2%).

The microbiome of dwarf chameleons of the species Bradypodion melanocephalum, Bradypodion thamnobates and Bradypodion setaroi is similar to that of other reptiles. It consists mainly of proteobacteria and firmicutes, which may contribute to digestion. One particular bacterial species also suggests that the diet of the studied dwarf chameleons may include beetles of the genus Dendrophagus. The microbiome of all three dwarf chameleon species was very similar in the cheek swabs – this is called phylosymbiosis – while there were differences in composition between the species in the faeces. In all three dwarf chameleon species, significantly more different bacteria were found in the faeces than in the cheek swabs. A comparison between males and females did not reveal any significant differences in the microbiome of all three chameleon species. The author assumes that the bacterial species depend on the different habitats of the respective species. It is still unclear to what extent the microbiome is related to bacteria that a chameleon may ingest with feeding insects or from the soil of its environment. A detailed list of the bacterial species found can be found in the appendix of the publication.

The Hitchhiker’s Guide to dwarf chameleons (Bradypodion): The composition and function of the microbiome
Matthew G. Adair
Master of Science dissertation at the university of Johannesburg, 2023
DOI: not available